On the Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems

نویسندگان

  • L. B. Wahlbin
  • L. B. WAHLBIN
چکیده

Second order elliptic boundary value problems which are allowed to degenerate into zero order equations are considered. The behavior of the ordinary Galerkin finite element method without special arrangements to treat singularities is studied as the problem ranges from true second order to singularly perturbed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

A first-order system Petrov–Galerkin discretization for a reaction–diffusion problem on a fitted mesh

We consider the numerical solution, by a Petrov–Galerkin finite-element method, of a singularly perturbed reaction–diffusion differential equation posed on the unit square. In Lin & Stynes (2012, A balanced finite element method for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal., 50, 2729–2743), it is argued that the natural energy norm, associated with a standard Galerk...

متن کامل

A numerical study on the finite element solution of singularly perturbed systems of reaction-diffusion problems

We consider the approximation of singularly perturbed systems of reaction–diffusion problems, with the finite element method. The solution to such problems contains boundary layers which overlap and interact, and the numerical approximation must take this into account in order for the resulting scheme to converge uniformly with respect to the singular perturbation parameters. In this article we...

متن کامل

Superconvergence of Conforming Finite Element for Fourth-Order Singularly Perturbed Problems of Reaction Diffusion Type in 1D

We consider conforming finite element approximation of fourth-order singularly perturbed problems of reaction diffusion type. We prove superconvergence of standard C1 finite element method of degree p on a modified Shishkin mesh. In particular, a superconvergence error bound of ( N−1ln(N + 1))p in a discrete energy norm is established. The error bound is uniformly valid with respect to the sing...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010